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Abstract 
 

NFA usually requires significantly less states than 
DFA to recognize the same language. NFAs in one letter 
input alphabet are more restricted and the gap between 
NFAs and DFAs decreases, because the power of NFA is in 
its ability to reach many subsets of its state set. We discuss 
limitations of DFAs in one letter input alphabet and show 
that approximately 1/4 of all subsets are unreachable and for 
every fixed k∈{2,...,number_of_states-2} at least one subset 
of size k is unreachable. 

 
 

1. Introduction 
 

It is known that Non-deterministic Finite Automata (NFA) recognize the same languages as 
Deterministic Finite Automata (DFA). For every n-state NFA (n-NFA) there exists equivalent DFA 
with at most 2n states. It is known, that for 3 or more letter input alphabet it is possible to construct 
n-NFA for which equivalent DFA cannot be built with less than 2n states. If only 2 letter input 
alphabet is used, it is possible to construct n-NFA for witch equivalent DFA requires at least 2n-1 
states. There are no published results for one letter input alphabet. Currently Ansis Rosmanis is 
researching this problem and has unpublished result that states: for each n there exists n-NFA with one 
letter input alphabet (n-NFA1) for which equivalent DFA has at least polynomial (with respect to n) 
size, but does not exist n-NFA1 for which equivalent DFA requires exponential (with respect to n) 
number of states. 

In this paper we will discuss only NFAs with one letter input alphabet (NFA1). In section 3 
we propose a brief combinatorial illustration for the fact that for each n-NFA1 approximately 1/4 of its 
configurations is unreachable (thus equivalent DFA can be built with at most 3⋅2n-2 states). In section 4 
we prove that for each k∈{2,...,n-2} every NFA1 cannot reach at least one of it’s subset of size k (if k 
does not belongs to interval mentioned, then for fixed k∈{0,1,n-1,n} it is trivial to construct such an 
automaton). It is important to note, that estimation of number of all reachable configurations done by 
Ansis Rosmanis does not say anything about subsets of fixed size. Thus our proof shows the weakness 
of NFA1s even for fixed size of its subsets. 

This research was supported by Grant No. 05.1528 from the Latvian Council of Science and 
by the European Commission, Contract IST-1999-11234 (QAIP) phone: +371-7224363, fax: 
+371-7820153. 
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2. Terms and Notations 
 
NFA1 – Non-deterministic Finite Automaton 

(NFA) whose input alphabet consists of 
one letter 

n-NFA1 – NFA1 that has n states  
q – a state of NFA1 
Qn – a set that contains all states of n-NFA1 

(|Qn|=n) 
qi--->qj – represents a transition (due to 

reading one input letter) from qi to qj 
(qi,qj∈Qn) 

qi-ε->qj - represents an ε-transition from qi to 
qj(qi,qj∈Qn) 

configuration (or subset) – a subset of Qn  
Conf(t) – the configuration of n-NFA1 at the 

moment t (after reading in a word of length 
t). This subset includes those and only 
those states which are reachable from some 
initial state by reading word of length t in 
(Conf(t)⊆Qn). 

a subset S is reached at the moment t – 
S=Conf(t) 

a subset S is reachable – there exists t such as 
Conf(t)=S 

a subset S is not reachable – there does not 
exist t such as Conf(t)=S (in fact, it is 
sufficient to show that the automaton has 
not reached subset S before reaching some 
subset twice) 

|S| - the number of elements in the set S 
k-subset – a subset of Qn which contains 

exactly k states 
cycle – a set of states {q0,q1,...,qc-1} such as 

∀i∈{0,...,c-1}:qi--->qi⊕1, where ⊕ denotes 
addition modulus c (c is called the length 
of cycle) 

chain – a set of states {q0,q1,...,qc-1} such as 
∀i∈{0,...,c-2}:qi--->qi+1 (c is called the 
length of chain, qc-1 is called the end of the 
chain) 

 
 

3. Unreachable Configurations 
 
It is known that each n-NFA can be 
transformed without changing the number of 
states and the amount of reachable 
configurations so that it does not contain 
ε-transitions. Thus in this section only 
n-NFA’s without ε-transitions will be 
discussed. 
 
Theorem T1 For each n-NFA1 at least ~1/4 of 
its configurations is unreachable. 
 
Lemma T1[L1] If NFA1 contains subgraph 
depicted in Fig. 1 (q1≠q2) then at least ~1/4 of 
its configurations is unreachable. 
 
Proof T1[L1] Let us denote the set of all 
configurations that contains q0 by N0 (|N0|=2n-1) 
and the set of configurations that contains q1 
and q2 by N1&2 (|N1&2|=2n-2). If Conf(t)∈N0 
then Conf(t+1)∈N1&2 (it also concerns 
configurations that are included both in N0 and 
N1&2). If the same configuration is reached 
twice then configurations that have not been 
reached until that moment will not be reached 
at all. Thus only |N1&2|+1 configurations from 
N0 are reachable. The other 2n-2-1 will be 
unreachable. The amount of unreachable 
configurations forms approximately 1/4 of all 
(2n) configurations. 
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Lemma T1[L2] If NFA1 contains subgraph 
depicted in Fig. 2 (q1≠q2) then at least ~1/4 of 
its configurations is unreachable. 

Fig. 1 Fig. 2 

 
Proof T1[L2] Let us denote the set of all 
configurations that contains q0 by N0 (|N0|=2n-1) 
and the set of configurations that contains q1 or 
q2 by N1v2 (|N1v2|=2⋅2n-1-2n-2=3⋅2n-2). If 
Conf(t)∈N1v2 then Conf(t+1)∈N0 (it also 
concerns configurations that are included both 
in N0 and N1v2). If the same configuration is 
reached twice then configurations that have not 
been reached until that moment will not be 
reached at all. Thus only |N0|+1 configurations 
from N1v2 are reachable. The other 2n-2-1 will 
be unreachable. The amount of unreachable 
configurations forms approximately 1/4 of all 
(2n) configurations. 
 
Lemma T1[L3] If NFA1 contains neither 
subgraph depicted in Fig. 1 nor subgraph 



depicted in Fig. 2. (q1≠q2) then at least ~1/2 of 
its configurations is unreachable. 
 
Proof T1[L3] In this case the number of both 
incoming and outcoming arrows for each state 
is 0 or 1. Thus automaton consists of separate 
parts and each part is either a cycle or a chain. 
Let us perform the following transformations 
that do not influence the amount of reachable 
configurations. Remove all cycles that do not 
contain any initial state or contain only initial 
states. Thus all cycles of length 1 will be 
removed. Leave only one state in each cycle as 
initial. Find the chain with the most distant 
initial state viewed from its end and leave this 
state as only initial state in the chain. Remove 
all other chains. Now we have gained 
automaton that consists of cycles (with one 

initial state in each) of length greater then one 
and at most one chain with one initial state. 
Thus the number of initial states cannot be 
greater than ⎡n/2⎤. The amount of states 
contained in Conf(t) is not increasing in time. 
It means that automaton cannot reach its 
subsets containing more than ⎡n/2⎤ states. The 
number of k-subsets (where k∈{0,...,⎡n/2⎤}) is 
approximately 2n-1 or 1/2 of all n-NFA1’s 
subsets. 
 
Proof T1
Lemmas T1[L1], T1[L2] and T1[L3] cover all 
cases and in each case at least ~1/4 of all 
configurations remains unreachable. Thus T1 
has been proved. 

 
 

4. Unreachable Configurations of Fixed Size 
 
Theorem T2 It is not possible to construct 
n-NFA1 (n≥4) that could reach all its k-subsets 
for arbitrary chosen k∈{2,...,n-2}. 
 
Statement T2[S1] For each n-NFA1 (n≥4) and 
for each k-subset (k∈{2,...,n-2}) two states 
p1,p2∈Qn that belong to this subset and two 
states r1,r2∈Qn that does not belong to this 
subset can be found. This is because k≥2 and 
k≤n-2. 
 
Statement T2[S2] For each n-NFA1 (n≥4), 
each k∈{2,...,n-2} and each quadruple of states 
p1,p2,r1,r2∈Qn k-subset W⊆Qn (such as 
p1,p2∈W, but r1,r2∉W) can be found (follows 
from T2[S1]). 
 
Lemma T2[L1] If n-NFA1 (n≥4) contains 
ε-transition then for each k∈{2,...,n-2} 
unreachable k-subset can be found. 
 
Proof T2[L1] If n-NFA1 contains ε-transition 
then a pair of states qp,qr∈Qn can be found 
such as qp-ε->qr. It means that a subset that 
includes qp, but does not include qr will be 
unreachable. According to T2[S2] for each 
k∈{2,...,n-2} such k-subset can be found (for 
instance, by taking p1=qp and r1=qr). 
 
From now on only n-NFA’s without 
ε-transitions will be discussed. Theorem T2 
will be proved by using reductio ad absurdum. 

We assume that it is possible to construct 
n-NFA1 required in T2 and then examine the 
various properties this n-NFA1 should have 
and derive a contradiction. The proof will be 
divided into two parts. In the first part (T2a) 
the assumption that the n-NFA1 contains a 
cycle of length greater than three will be made. 
In the second part (T2b) n-NFA1s that does not 
contain a cycle of length greater than three will 
be examined. 
 
Theorem T2a It is not possible to construct 
n-NFA1 (n≥4) containing a cycle of length c≥4 
that could reach all its k-subsets for arbitrary 
chosen k∈{2,...,n-2}. 
 
Statement T2a[S1] For each n-NFA1 (n≥4) 
containing a cycle C of length |C|≥4, for each 
k∈{2,...,n-2} and each quadruple of states 
p1,p2,r1,r2∈C k-subset W (such as p1,p2∈W, but 
r1,r2∉W) can be found (follows from T2[S2]). 
 
Lemma T2a[L1] The amount of 
simultaneously reachable states in each 
NFA1’s cycle cannot decrease in time. 
 
Proof T2a[L1] For each m different states 
qa1,qa2,...,qam∈C one can find m different states 
qb1,qb2,...,qbm∈C such as ∀j∈{1,...,m}:qaj--->qbj 
where m∈{1,...,c}. It can be done by choosing 
bj=aj⊕1. If |Conf(t)∩C|=m then 



|Conf(t+1)∩C|≥m thus the amount of reachable 
states in a cycle cannot decrease with time. 
 
Lemma T2a[L2] If NFA1 contains a cycle C 
then for each pair of reachable subsets 
S1=Conf(t1) and S2=Conf(t2), where t2>t1 and 
|S1∩C|=|S2∩C|, some d can be found such as 
S2∩C can be obtained by rotating S1∩C in the 
direction of cycle’s arrows by d units. 
 
Proof T2a[L2] Let us denote the elements of 
the set Conf(t1)∩C by qa1,qa2,...,qam∈C (m≤|C|). 
As in the proof of the T2a[L1], for each w>0 m 
different states qb1,qb2,...,qbm∈C such as 
{qb1,qb2,...,qbm}⊆Conf(t1+w) can be found by 
choosing bj=aj⊕w. S2 can be obtained by 
rotating S1 by d=t2-t1 in the direction of cycle’s 
arrows. This is because the amount of 
reachable states in the cycle is growing with 
respect to time (T2a[L1]) and |S1∩C|=|S2∩C|. 
 
Proof T2a Let us choose two k-subsets S1 and 
S2. So that states belonging to the set S1∩C are 
placed together and the four states mentioned 
in the statement T2[S2] are placed together in 
the following sequence: p1p2r1r2 (see Fig. 3). 
But states that states belong to the set S2∩C are 
not placed together as four mentioned states 
are sequence p1r1p2r2 (Fig. 4). 
 
 
 
 
 
 
 
 
Here two arrangements in the cycle has been 
gained that cannot be gained one from another 
by rotation. Thus these both k-subsets are 
mutually exclusive – if one of these k-subsets 
can be reached then other cannot and vice 
versa (follows from T2a[L2]). It means that for 
each n-NFA1 (n≥4) containing cycle of length 
greater than three for each k∈{2,...,n-2} there 
can be found at least two mutually exclusive 
k-subsets. In other words, there does not exist 
k from interval {2,...,n-2} such as any NFA1 
could reach all its k-subsets. 
 
Now NFA1s that does not contain cycle of 
length greater than three will be examined. 
 

Theorem T2b It is not possible to construct 
n-NFA1 (n≥4) that does not contain a cycle of 
length c≥4 and could reach all its k-subsets for 
arbitrary chosen k∈{2,...,n-2}. 
 
Lemma T2b[L1] If n-NFA1 does not contain 
any cycle one can find such state r∈Qn which 
cannot be reached more than once. 
 
Proof T2b[L1] At first we will prove that there 
is a state in n-NFA1 that does not have any 
incoming arrow. Let us assume the opposite – 
each state has at least one incoming arrow but 
automaton does not contain any cycle. For 
arbitrary chosen state q1∈Qn one can find 
q2∈Qn such as q2--->q1 and q2≠q1 (if q2=q1 then 
there would be a cycle in automaton). 
Similarly q3∈Qn can be found such as q3--->q2 
where q3 is some state we have not dealt before 
i.e. q3≠q2 and q3≠q1. This is because there is 
not any cycle in the automaton examined. 
Proceeding in similar manner we will finally 
come to qn∈Qn. Yet for qn it will not be 
possible to find previously unencoutered 
qx∈Qn such as qx--->qn. Here the contradiction 
is derived, as there is some state r, which does 
not have incoming arrow. If the state r is initial 
then it can be reached only once, otherwise it 
cannot be reached at all. 
 
Statement T2b[S1] If n-NFA1 (n≥4) does not 
contain any cycle then for each k∈{2,...,n-2} 
unreachable k-subset can be found (this is 
because according to T2[S2] for each 
k∈{2,...,n-2} at least two k-subsets containing 
state r mentioned in lemma T2b[L1] can be 
found). 
 
Lemma T2b[L2] If n-NFA1 (n≥4) contains a 
cycle of length 1 (a state q pointing to itself) 
then for each k∈{2,...,n-2} unreachable 
k-subset can be found. 
 
Proof T2b[L2] If q is initial state then it is 
impossible to reach a k-subset to which q does 
not belong (the existence of such k-subset 
follows from statement T2[S2]). If q is not 
initial state then there should exist p∈Qn such 
as p--->q as otherwise none k-subset 
containing q would be reachable. In this case it 
is not possible to reach more than one k-subset 
containing p, but not q. Yet there will be at 
least two such k-subsets (follows from T2[S2]: 
p1=p, r1=q, but p2 and r2 can be chosen in at 

p2 r1p1 r2
r1 p2p1 r2

Fig. 3 Fig. 4



least two different ways as there are at least 4 
states in automaton) 
 
Lemma T2b[L3] If none of n-NFA’s (n≥4) 
initial states belongs to some cycle then for 
each k∈{2,...,n-2} unreachable k-subset can be 
found. 
 
Proof T2b[L3] Let us construct a new NFA1 
A’ that contains all initial states of given 
n-NFA1 A. There will be a transition from 
state q to state p in A’ iff state p can be reached 
from q in the given automaton A. There will 
not be any cycles in A’ not having been 
already in A. Thus there will be a state r in A’ 
which cannot be reached more than once 
(follows from T2b[L1]). It can be seen that 
also the corresponding state in A will not be 
reachable more than once. In T2[S2] we 
concluded that for each k∈{2,...,n-2} and each 
state r there is more than one k-subset that 
contains r. Thus for each k at least one k-subset 
will be unreachable. 
 
Lemma T2b[L4] If there exists initial state 
which belongs to some cycle C2 of length 2 in 
n-NFA1 (n≥4) then for each k∈{2,...,n-2} at 
least one unreachable k-subset can be found. 
 
Proof T2b[L4] According to T2a[L1] the 
amount of simultaneously reachable states in a 
cycle cannot decrease. Thus for each 
k∈{2,...,n-2} k-subset that does not contain 
any of C2 states will be unreachable. The 
existence of such k-subset follows from 
T2[S2]. 
 
Lemma T2b[L5] If there is more than one 
initial state in some n-NFA1’s (n≥4) cycle C3 
of length three then for each k∈{2,...,n-2} 
unreachable k-subset can be found. 
 
Proof T2b[L5] By repeating similar arguments 
as in T2b[L4] it can be seen that for each 
k∈{2,...,n-2} those k-subsets that does not 
contain two C3 states will be unreachable. 
 
Lemma T2b[L6] If there is initial state in some 
n-NFA1’s (n≥5) cycle C3 of length three then 
for each k∈{2,...,n-3} (k≠n-2) unreachable 
k-subset can be found. 
 
Proof T2b[L6] In this case for arbitrary chosen 
three states r1,r2,r3∈Qn and for each 

k∈{2,...,n-3} at least one k-subset that does not 
contain any of states r1,r2,r3 can be found. It 
can be easily concluded that for each 
k∈{2,...,n-3} k-subset that does not contain 
any of three states belonging to C3 cannot be 
reached (here r1,r2,r3 are chosen from cycle C3). 
 
Proof T2b According to T2b[S1] automaton 
contains at least one cycle. T2a does not allow 
cycles with more than 4 states. Cycles 
consisting of only one state are denied by 
T2b[L2]. Thus automaton contains at least one 
cycle of length two or three. According to 
T2b[L3] at least one of initial states must be in 
a cycle. Let us denote this cycle by C. 
According to T2b[L4] the length of C cannot 
be 2. Thus C consists of 3 states. There can be 
only one initial state in cycle C (follows from 
T2b[L5]). If there exists k, such as all 
k-subsets can be reached then according to 
T2b[L6] k∉{2,...,n-3} thus k could be only 
n-2. It means that all states that do not belong 
to cycle C have to be initial. Three different 
cases can be distinguished: 
 
a) Cycle C shares two states with cycle C2 of 
length 2 (see Fig. 5). There cannot be other 
kind of cycles of length 2 in the automaton 
otherwise there would be initial state in a cycle 
of length 2, but it is denied by T2b[L4]. 
 
b) Cycle C shares two states with at least one 
cycle of length 3 (see Fig. 6). Let us denote 
this cycle by C3. There cannot be other kind of 
cycles of length 3 in the automaton. Otherwise 
there would be two initial states in a cycle of 
length 3, but it is denied by T2b[L5]. There 
cannot be cycle of length 3, which contains the 
same states as the cycle C, but with arrows 
pointing in opposite direction. Then a cycle of 
length 2 containing initial state would be 
formed. 
 
c) Cycle C does not share any of its elements 
with other cycles (see Fig. 7). 
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For all three cases all states of automaton other 
than q1 and q2 are initial.  
 
a) Let us look at two (n-2)-subsets S1 and S2 
such as S1∩C=q2 and S2∩C={q0,q2}. These 
two subsets are mutually exclusive. S1 cannot 
be reached after reaching S2, because 
|S1∩C|<|S2∩C| (according to T2a[L1] the 
amount of reachable states in each cycle 
cannot decrease). Yet also S2 cannot be 
reached after reaching S1 (if Conf(t)∩C=S1 
then (Conf(t+1)∩C)⊇{q0,q1},  
(Conf(t+2)∩C)⊇{q1,q2} and  
∀d≥3:(Conf(t+d)∩C)⊇{q0,q1,q2}). 
 
b) In this case let us look at two (n-2)-subsets 
S1 and S2. S1 contains q1 and q0, but does not 
contain q2 and q3. S2 contains q2 and q3, but 
does not contain q0 and q1. These two subsets 
are mutually exclusive. This is because 
|S1∩C|=2 and |S1∩C3|=1, but |S2∩C|=1 and 
|S2∩C3|=2. According to T2a[L1] the amount 

of simultaneously reachable states in each 
cycles cannot decrease. This condition cannot 
be met no matter in what order S1 and S2 are 
reached. 

q1

q0 C

 
q2 c) In this case C is the only cycle in automaton. 

Let us construct new automaton using the same 
principle as in the proof of lemma T2b[L3] (to 
avoid cycles we will neglect transition 
q0--->q0). There will be no cycles in the 
automaton gained otherwise original 
automaton besides cycle C would contain at 
least one other cycle. Thus there will exist a 
state r which will not be reachable more than 
once in automaton constructed (follows from 
T2b[L1]) and also in original automaton. If 
r=q0 then cycle C is not reachable from states 
which does not belong to it. Thus the number 
of simultaneously reachable states in C cannot 
increase, thus subsets containing more than 
one state of C will not be reachable. If r≠q0 
then r cannot be reached more than once (but 
according to T2[S2] it belongs to at least two 
different (n-2)-subsets). 

Fig. 7 

 
Proof T2 Theorems T2a and T2b together form 
T2. Thus by proving T2a and T2b, we have 
also proved T2. 
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